On Euclidean random matrices in high dimension

نویسنده

  • Charles Bordenave
چکیده

In this note, we study the n×n random Euclidean matrix whose entry (i, j) is equal to f(‖Xi−Xj‖) for some function f and the Xi’s are i.i.d. isotropic vectors inR. In the regime where n and p both grow to infinity and are proportional, we give some sufficient conditions for the empirical distribution of the eigenvalues to converge weakly. We illustrate our result on log-concave random vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit theorems for radial random walks on Euclidean spaces of high dimensions

Let ν ∈ M([0,∞[) be a xed probability measure. For each dimension p ∈ N, let (X n)n≥1 be i.i.d. R-valued random variables with radially symmetric distributions and radial distribution ν. We investigate the distribution of the euclidean length of S n := X p 1 + . . . + X p n for large parameters n and p. Depending on the growth of the dimension p = pn on the number of steps n we derive by the me...

متن کامل

Limit theorems for radial random walks on p × q - matrices as p tends to infinity

The radial probability measures on R are in a one-to-one correspondence with probability measures on [0,∞[ by taking images of measures w.r.t. the Euclidean norm mapping. For fixed ν ∈M1([0,∞[) and each dimension p, we consider i.i.d. R-valued random variables X 1 , X 2 , . . . with radial laws corresponding to ν as above. We derive weak and strong laws of large numbers as well as a large devia...

متن کامل

Statistical properties of determinantal point processes in high-dimensional Euclidean spaces.

The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional determinantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end, we express these functions as determinants of NxN matrices and then extrapolate to N-->infinity . This formulation allows for a quick and accurate numerical evaluation of these q...

متن کامل

Analyse fonctionnelle/Functional Analysis Probabilités/Probability Theory Random Euclidean embeddings in spaces of bounded volume ratio

Let (R , ‖ · ‖) be the space R equipped with a norm ‖ · ‖ whose unit ball has a bounded volume ratio with respect to the Euclidean unit ball. Let Γ be any random N×n matrix with N > n, whose entries are independent random variables satisfying some moment assumptions. We show that with high probability Γ is a good isomorphism from the n-dimensional Euclidean space (R, | · |) onto its image in (R...

متن کامل

Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields

Abstract: We obtain formulae for the expected number and height distribution of critical points of general smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013